THE EM ALGORITHM FOR STANDARD STOCHASTIC FRONTIER MODELS
نویسندگان
چکیده
منابع مشابه
The Stochastic EM Algorithm for Censored Mixed Models
The Stochastic EM algorithm is a Monte Carlo method for approximating the regular EM algorithm in missing data situations where the E step is intractable. It produces a stationary Markov chain iterative sequence where each iteration is the result of applying complete data maximum likelihood estimation to a single simulation of the complete data conditional on the observed data. Analogously to o...
متن کاملAn EM and a Stochastic Version of the EM Algorithm for Nonparametric Hidden Semi-Markov Models
The Hidden semi-Markov models (HSMMs) have been introduced to overcome the constraint of a geometric sojourn time distribution for the different hidden states in the classical hidden Markov models. Several variations of HSMMs have been proposed that model the sojourn times by a parametric or a nonparametric family of distributions. In this article, we concentrate our interest on the nonparametr...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولStationary Points for Parametric Stochastic Frontier Models
The results of Waldman (1982) on the Normal-Half Normal stochastic frontier model are generalized using the theory of the Dirac delta (Dirac, 1930), and distribution-free conditions are established to ensure a stationary point in the likelihood as the variance of the inefficiency distribution goes to zero. Stability of the stationary point and "wrong skew" results are derived or simulated for c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pesquisa Operacional
سال: 2019
ISSN: 1678-5142,0101-7438
DOI: 10.1590/0101-7438.2019.039.03.0361